A Two-component Transport Model for Solar Wind Fluctuations: Waves plus Quasi-2D Turbulence
نویسندگان
چکیده
We present a model for the transport of solar wind fluctuations, based on the assumption that they can be well-represented using two distinct components: a quasi-2D turbulence piece and a wave-like piece. For each component, coupled transport equations for its energy, cross helicity, and characteristic lengthscale(s) are derived, along with an equation for the proton temperature. This energy-containing “two-component” model includes the effects of solar wind expansion and advection, driving by stream shear and pickup ions, and nonlinear cascades. Nonlinear effects are modeled using a recently developed one-point phenomenology for such a two-component model of homogeneous MHD turbulence [1]. Heating due to these nonlinear effects is included in the temperature equation. Numerical solutions are discussed and compared with observations.
منابع مشابه
Interpreting Power Anisotropy Measurements in Plasma Turbulence
A relationship between power anisotropy and wavevector anisotropy in turbulent fluctuations is derived. This can be used to interpret plasma turbulence measurements, for example in the solar wind. If fluctuations are anisotropic in shape then the ion gyroscale break point in spectra in the directions parallel and perpendicular to the magnetic field would not occur at the same frequency, and sim...
متن کاملConstraining Low-frequency Alfvénic Turbulence in the Solar Wind Using Density Fluctuation Measurements
One proposed mechanism for heating the solar wind, from close to the sun to beyond ∼ 10 AU, invokes lowfrequency, oblique, Alfvén-wave turbulence. Because small-scale oblique Alfvén waves (kinetic Alfvén waves) are compressive, the measured density fluctuations in the solar wind place an upper limit on the amplitude of kinetic Alfvén waves and hence an upper limit on the rate at which the solar...
متن کاملLangmuir Wave Electric Fields Induced by Electron Beams in the Heliosphere
Solar electron beams responsible for type III radio emission generate Langmuir waves as they propagate out from the Sun. The Langmuir waves are observed via in-situ electric field measurements. These Langmuir waves are not smoothly distributed but occur in discrete clumps, commonly attributed to the turbulent nature of the solar wind electron density. Exactly how the density turbulence modulate...
متن کاملAlfvénic Turbulence in the Extended Solar Corona: Kinetic Effects and Proton Heating
We present a model of magnetohydrodynamic (MHD) turbulence in the extended solar corona that contains the effects of collisionless dissipation and anisotropic particle heating. Recent observations have shown that preferential heating and acceleration of positive ions occur in the first few solar radii of the high-speed solar wind. Measurements made by the Ultraviolet Coronagraph Spectrometer ab...
متن کاملA dynamical model of plasma turbulence in the solar wind.
A dynamical approach, rather than the usual statistical approach, is taken to explore the physical mechanisms underlying the nonlinear transfer of energy, the damping of the turbulent fluctuations, and the development of coherent structures in kinetic plasma turbulence. It is argued that the linear and nonlinear dynamics of Alfvén waves are responsible, at a very fundamental level, for some of ...
متن کامل